

To illustrate the need, consider an example Information
Management System (IMS) that enables sharing of sensitive
information between information publishing and consuming
clients. Problems associated with configuration management can
easily lead to situations in which the IMS allows unauthenticated
clients to participate in information exchanges or allows
unauthorized information to be disseminated to consumers.
Furthermore, the loose coupling between subscribers and the
IMS can lead to situations in which the IMS is unavailable and
consumers believe that no new information is being published,
causing significant misunderstandings across information sharing
relationships. Finally, remnant vulnerabilities in the IMS can
cause failures to happen at any time and cause significant damage
to mission execution if not dealt with in a real-time manner.
Unavailability of information sharing directly reduces situational
awareness, loss of integrity can give adversaries control over
mission execution, and loss of confidentiality can be detrimental
to the reputation of actors and/or mission goals in general.

Monitoring and validation of IMS and client operations can aid
in detection, diagnosis, and correction of situations like this. This
is particularly important since 92% of reported vulnerabilities
are located at the applications layer [1]. Despite the importance
of experimental validation and continuous monitoring, and
the increased support to adopt security assessment as part of
the software development life cycle, current approaches suffer
from a number of shortcomings that limit their application in
continuous monitoring situations and their use in the validation
of assurance claims.

First, current test practices favor unit tests over integrated tests for
establishing correct functionality. Unit testing, e.g., performed
via Junit [2], checks program functionality piece-by-piece but
provides little to assess the overall information assurance claims
of a system under test. Various tools exist for actively assessing the
security of distributed systems, e.g., Nessus [3] and HP Fortify
[4] to name a few, but their functionality is achieved by running
specialized unit tests for security properties against either the code
or the running system. In contrast, integrated end-to-end testing
tools, such as YourKit [5] or Grinder [6], focus on performance
and scalability. These tools enable operators to find bottlenecks
or provision computing resources, but lack metrics associated
with assessing security and correct functionality.

Second, integrated and end-to-end testing and experimentation is
often postponed until software artifacts have matured significantly.
This is because integrated testing and experimentation can be
time consuming and effort intensive and the perception is that
the cost of manually performing experiments early on frequently
outweighs the benefits.

Finally, common testing and metrics frameworks add additional
dependencies to existing systems, in the form of additional
libraries that need to be loaded into the system under test and
lines of code being added in support of instrumentation. This
not only increases software complexity but more importantly can
cause version dependency issues. It can also have unintended side
effects on certification and accreditation as the software now has
additional code that must be certified but that is not part of the
core functionality, i.e., it is part of the continuous monitoring.

Metrinome – Continuous Monitoring and Security
Validation of Distributed Systems
By Michael Atighetchi, Vatche Ishakian, Joseph Loyall, Partha Pal, Asher Sinclair, Robert Grant

Distributed enterprise systems consist of a collection of interlinked services and
components that exchange information to collectively implement functionality in
support of (sometimes mission critical) workflows. Systematic experimental testing

and continuous runtime monitoring of these large scale distributed systems, including event
interpretation and aggregation, are key to ensuring that the system’s implementation functions
as expected and that its security is not compromised.

Distribution A. Approved for public release; distribution unlimited (Case Number 88ABW-2013-4215). This work was sponsored by the Air Force Research LaboratoryAFRL.

Journal of Cyber Security and Information Systems Volume II Number 1: Knowledge Management20

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Metrinome - Continuous Monitoring and Security Validation of
Distributed Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
BBN Technologies,10 Moulton Street,Cambridge,MA,02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

METRINOME – CONTINUOUS MONITORING AND SECURITY
VALIDATION OF DISTRIBUTED SYSTEMS (CONT.)

This article describes Metrinome, a metrics framework written
in Java that is specifically designed to provide a platform for
structured continuous security assessments throughout the
software lifecycle. The novelty of Metrinome lies in its loose
coupling with the system under test and its integration of end-to-
end testing with continuous application-level remote monitoring.
Specifically, Metrinome provides (1) runtime computation of a
wide range of metrics from log messages generated by distributed
components during system execution, (2) execution of assertions
over the metrics to determine correct functionality while the
system is operating, and (3) improved situational awareness via
dashboard views and generation of experimentation reports. The
outputs of Metrinome-based assessments can be used as input to
Certification and Assessment (C&A) processes to precisely doc-
ument the assertions that were previously checked to hold true in
the system. Metrinome is available free of charge to government
entities through AFRL.

II. Related Work

A. SNMP Dashboards
A number of management platforms exist that use the Simple
Network Management Protocol (SNMP) for monitoring devices
and nodes. Network Management Information System (NMIS)
[7] operates at the networking level and enables monitoring,
fault detection, and configuration management of large complex
networks. Its main metrics deal with device reachability,
availability, and performance. HP OpenView, IBM Tivoli, and
Nagios provide similar functionality. Unlike these platforms,
Metrinome specializes on monitoring at the application level
and execution of fine-grained assertions.

B. Distributed Testing
Software Testing Automation Framework (STAF) [8] is an
open source multi-platform, multi-language framework that
enables a set of functionalities including logging, monitoring
and process invocation for the main purpose of testing. STAF
operates in a peer environment; a network of STAF-enabled
machines is built by running STAF agents across a set of
networked hosts. In contrast to STAF, the goal of Metrinome is
more focused and hence no agents are required to be installed.
Avoiding agents not only leads to reduced maintenance
costs but also significantly reduces the attack surface across
networked systems under test. Due to their complimentary
nature, we have used Metrinome in conjunction with STAF
for continuous testing and integration.

C. Application-level Metrics Frameworks
Several application-level metrics frameworks exist to monitor
and measure the performance of applications. For example,
Javasimon [9] exposes an API which can be placed into the code

and allows inline computation of count metrics and measurement
of durations. Metrics [10] is similar to Javasimon but allows data
to be streamed to other reporting systems, e.g., Ganglia [11] and
Graphite [12].

An important distinction between Metrinome and the above
mentioned frameworks is Metrinome’s use of log messages
to provide the same monitoring functionality. This makes
Metrinome loosely coupled with the system being monitored
and makes it applicable to any application that generates log
messages, e.g., using Log4j or Logback.

D. Reporting/Graphing Backends
Ganglia, Graphite, and Splunk [13] are examples of highly
popular platforms that offer the ability to search, analyze, and
visualize data in real-time. Typically these frameworks consist of
a processing backend that collects and stores the data. They also
use statistical methods that provide new insight and intelligence
about the data. Metrinome provides functionalities that intersect
with the above mentioned applications, such as dashboard views
and experimentation reports. One difference is that Metrinome
focuses less on scalability but rather on ensuring correct execution
of a system under test through the validation of assertions.

E. SIEM Platforms
Security Information and Event Management platforms (SIEMs),
e.g. ArcSight [14], adopt many of the technologies described
above, such as SNMP dashboards and reporting backends, to
provide users with the ability to query, and analyze security
threats generated by both hardware and software applications.
Unlike Metrinome, these platforms require the deployment of
agents on networked hosts to collect and report events.

III. Design and Architecture
Metrinome is designed to achieve specific objectives in portability
and ease of use.

 • Portability – Metrinome can monitor a system inde-
pendent of the implementation of the system.

 • Minimal coding overhead – Rather than adding new
instrumentation libraries to monitored processes (caus-
ing versioning conflicts and Java classpath pollution),
Metrinome interfaces with existing logging and auditing
frameworks, e.g., Logback [15].

 • Ease of use – To be of immediate use to experimenters
and administrators, it should be easy to specify metrics and
assertions that must hold over the metrics in a systematic
way. In addition, results of metric computation need to be
readily accessible by humans or other programs through
a well-defined Application Programming Interface (API)
and Graphical User Interface (GUI).

Cyber Security and Information Systems Information Analysis Center (CSIAC) 21

Figure 1: Metrinome High-Level Architecture

Figure 1 provides an overview of Metrinome high level architecture.
Metrinome works with a set of monitored processes that have the
ability to send log messages over TCP connections to the ingest
API provided by the Metrics Server. Ingestion is performed via
simple logging configuration changes on the monitored processes,
e.g., by specifying the use of a SocketAppender in Logback to send
certain log messages remotely to the Metrics Server over TCP
connections in addition to or instead of sending those messages
to the console or a local file.

Due to the fact that log messages issued by different processes may
be similar, particularly if the processes are executing the same code
base on different physical machines, the Metrics Server requires a
descriptive unique process name associated with a specific logging
instance as part of the log message. This requirement has already been
built into most of the logging and auditing framework, enabling
filtering of messages based on process names within Metrinome. The
processing performed by Metrinome on received messages is defined
using a XML-based Domain Specific Language (DSL), describing
concepts such as sections, metrics, functions, and assertions. The
Metrinome DSL allows administrators to specify processing logic
in one file that can be dynamically loaded into the Metrics Server.

Finally, to ease access to information, Metrinome offers two
interfaces: (1) a GUI, implemented in HTML and accessible
through common web Browsers using HTTP(s), and (2) a RESTful
[16] secure Web Services API for use by external programs.

IV. Modes of Use

The Metrinome framework supports a number of operational
use cases and scenarios, including use during demonstrations,
experiments, and continuous monitoring.

A. Runtime Visualization During Demonstrations
A major hurdle facing users during a demonstration is the ability to

showcase a holistic view of the system operation while highlighting
specific aspects that are being demonstrated, such as performance,
load balancing, resistance to security attacks, etc. Metrinome’s GUI
equips the demonstrator not only with the ability to pinpoint the
changes in the system as these events occur, but also to visualize
these changes to the measurements graphically during runtime.

B. Experimentation
Metrinome seamlessly integrates with off-the-shelf continuous
integration frameworks, such as Jenkins [17]. Users can
easily specify assertions showcasing desired system behavior.
Metrinome evaluates assertions at specific control points within
an experiment or at the end of an experiment. Metrinome’s
HTTP interface also allows user controlled and on-demand
evaluation of assertions at runtime. An HTTP response will
indicate whether the assertion evaluation passed successfully or
failed. In the case of failure, the HTTP response also includes
information about the particular assertions that failed.

When an experiment is complete, Metrinome stores the state
of all assertions along with metrics values, historical statistics,
and definition of metrics. This process supports offline analysis
and reproducibility of experiments, and can also generate
inputs to C&A processes. Finally, Metrinome has the ability to
export the metrics data into other programs using the Comma
Separated Value (CSV) format which allows administrators to
perform customized analysis over the data, using spreadsheet
and visualization software of their choice.

C. Continuous Monitoring
Continuous monitoring is a desirable feature in enterprise
environments because it decreases the time to react to occasional
hardware and software failures and minimizes the time to
mitigate security attacks such as Denial of Service attacks. While
guidance for continuous monitoring is maturing [18], agencies
have already started to struggle with compliance mainly due to
implementation costs [19]. Metrinome reduces costs by virtue of
integrating with existing logging and auditing frameworks. It also
provides ready dashboard functionality that increases situational
awareness at no additional implementation cost.

V. Interfaces

A. Metrinome Language
Metrinome processes receive messages based on user-specified
processing logic, which is dynamically loaded into the Metrics
Server. This processing logic echoes a user’s perception of the
desired system behavior and is declared in terms of metrics and
assertions. Users are able to express such terms using a XML-
based representation.

METRINOME – CONTINUOUS MONITORING AND SECURITY
VALIDATION OF DISTRIBUTED SYSTEMS (CONT.)

Journal of Cyber Security and Information Systems Volume II Number 1: Knowledge Management22

Figure 2 shows the XML schema for specifying the processing
logic. The metrics element serves as an enclosing element to the
entire document, while the section element serves not only to
organize the metrics and assertions into different clusters, but
also to limit the scope of assertions.

Figure 2: Metrinome’s DSL Schema

Thus an assertion specified for a particular section will not be
triggered against metrics in another section

The core of the language consists of two major elements: Metric
and assert. Metric is used to specify a measurement evaluation
while assert − associated with a metric or a set of metrics − is
used to specify the expected system behavior.

A metric element has a unique name and a description to provide
information about the Metric. An assert element has a unique
name and a metricRef element which uses regular expressions
to allow the referencing of a metric or a set of metrics that the
assertion will be evaluated on. Both elements encompass a
function which expresses a statistical calculation to perform.
Functions allow the user to configure the actual operation to be
performed, which in the case of metrics occurs over the incoming

message (e.g., counting the number of exceptions occurred) or
in the case of assertions, through the specification of a logic
expression (e.g., zero number of errors).

A function specified as part of an assertion is triggered when
an experiment is complete or by an external entity request. The
main purpose of assertion functions is to validate metric values,
thus they tend to be logical in nature.

A function specified in a metric can be triggered by a single event
which is equivalent to specifying unary functions, such as count, or
two separate events (denoted start_event and end_event) which is
equivalent to specifying binary functions, such as time difference.

An event consists of two parts: component and regex. A
component outlines the actual set of processes whose log
messages can trigger such an event. All processes not specified via
the component element will not trigger the specific event. The
regex specifies the message string to be processed. The processing
engine allows the use of regular expressions in both component
and regex, thus enabling easy specification of processes and
messages.

Finally, a function element can have several attributes:

 • round: rounds a numeric value of the measurement to
the nearest specified number beyond the decimal point.

 • roundhistory: similar to round but applies over the
statistical calculations rather than individual values.

Two special attributes epochs and colors are used to indicate
the staleness of a measurement as observed by the Metrics
Server and can be customized per metric. A user can specify a
staleness threshold and an associated severity color which will
be highlighted on the HTML GUI Interface.

Metrinome provides a set of predefined functions for computing
metrics, including the following:

 • count: counts the number of occurrences of an expression,
 • ratio: provides the ratio of two expressions,
 • diff: calculates the time difference between two events,
 • absdiff: calculates absolute time difference between two

events, and
 • sum: calculates the sum of two expressions.

Examples of assertion functions are equals, greater than, less
than, and greater than or equal. The library of functions can be
easily extended to support additional functions, which currently
requires changes to the Metrics Server but not to monitored
processes.

Cyber Security and Information Systems Information Analysis Center (CSIAC) 23

Figure 6: Metrinome’s Metrics with Graphs Interface

Figure 3: Example Metric: Count

Figure 4: Example Assertion: No Out Of Memory Error

Figure 5: Example Assertion: Non processing and error metrics should
be greater than zero.

Figure 3 highlights an example of a security assessment metric
called ‘reqAuthz_pass’ which provides the number of requests
that failed during authorization generated by processes containing
‘CoTToPubSvc’ or ‘CoTToSubSvc’ in their descriptive names,
based on which they are sending log messages to the Metrics
Server. This metric is useful especially for testing the authorization
process of an application during high load or automated attacks.

Figure 4 shows a simple assertion
example over a metric called
‘error_outOfMemoryErrors’. As
the name indicates, this is a useful
assertion for testing that a system
has no out-of-memory exceptions.

Another example shown in
Figure 5 highlights an assertion
that showcases the correct
functionality of the system
under evaluation. The assertion
uses regular expressions to state
that all metrics except the ones
containing error or processing in
their names should have values
greater than zero values.

B. HTML User Interface
Figure 6 displays a screenshot of the GUI. The first column
highlights the name of the metric as specified in the configuration
file. The next column highlights the latest measurement of the
metric. By default, Metrinome provides statistical information

such as the average, median, and standard deviation across
historical values. The last column highlights the changes in the
value of the metric over time graphically. This feature is useful
to quickly pinpoint measurement anomalies. Users can view
metrics without the graphs by clicking on the “Metrics” link.

C. Metrinome API Interface
The service API consists of an Assertion and Metrics service
accessible via HTTP.

The Assertion service offers the following functionality:
 • HTTP GET http://localhost:8080/assertions

 – Triggers evaluation of assertions against the current
status of the metrics, which either returns success in
the form of a HTTP response code of 204, or a list
of failed assertions, encoded as XML payload in the
HTTP response.

 • HTTP GET
http://localhost:8080/assertions?SHOWDEFS
 – Displays a table of current assertion definitions.

The Metrics service offers the following API:
 • HTTP GET http://localhost:8080/metrics?CSV

 – Returns the metrics values in a CSV format.
 • HTTP GET http://localhost:8080/metrics?EVENTS

 – Returns the collected events that were used to
generated the metrics.

VI. Use of Metrionome During Red Teaming

We have successfully used Metrinome during internal security
testing of software artifacts developed under the Secure Tactical
to Enterprise Gateway (STEG) [20] R&D effort. To evaluate
the security benefits of STEG, we build an internal threat model

METRINOME – CONTINUOUS MONITORING AND SECURITY
VALIDATION OF DISTRIBUTED SYSTEMS (CONT.)

Journal of Cyber Security and Information Systems Volume II Number 1: Knowledge Management24

that decomposes attacks into three main categories, namely,
attacks that cause (1) loss of integrity, e.g., by corrupting service
logic or changing data in transit, (2) loss of availability, e.g., by
crashing critical components or exhausting shared resources, and
(3) loss of confidentiality, e.g., by getting unauthorized access to
sensitive information. The attacks are then further decomposed
into sub-categories for each category (i.e., Integrity, Availability,
and Confidentiality). The model can be visually represented as
attack graphs, with annotations for defenses and logical arguments.

Figure 7 shows the resulting attack graph for integrity. The graph
reads from left to right and first branches out into high-level
attack strategies, e.g., Impersonate Client and Publish corrupted
IOs. The next levels then provide functional refinements for
the attacks. Attack refinement may lead to multiple alternatives
(branches). The next level of the attack graph is annotated with
mitigated by, indicating the defensive component that addresses
the particular attack represented by the branch. Note that an
attack strategy may have multiple mitigating defenses (indicated
by the mitigated by annotation on a branch). For the cases where
mitigation is verified by experimental observation or logical
arguments, the attack graph is shown with an additional level,
annotated with verified by describing how we determined that
the STEG prototype actually addresses the threat.

We used Metrinome to establish and document correct security
functionality by measuring a number of metrics listed in the attack
tree, including TLS authentication failures, identity mapping
failures, authorization failures, and anti-virus filtering failures.

VII. Conclusion and Future

Metrinome has proven to be an effective component in supporting
runtime assessment and monitoring, demonstrations and scientific
experimentation during execution of the STEG R&D effort. In
particular, the integration of end-to-end testing into the continuous
build cycle has helped identification and mitigation of run-time bugs.

Going forward, we expect Metrinome to grow as it is adopted
by other efforts with extended requirement sets. In particular,
we have plans to (1) make it easier to add custom functions

without the need to recompile the Metrics Server through a
plugin framework, (2) provide capabilities for more complex
graph generation, e.g., by providing boxplots via integration with
R [21], (3) provide the ability to define metrics over metrics and
metrics capturing trends, and (4) implement an adapter layer for
ingesting messages other than Logback.

About the Author(s)

Mr. Michael Atighetchi is a Senior Scientist in
the distributed computing group at BBN and
technical lead on several DARPA- and USAF-
sponsored research projects. Mr. Atighetchi has
a Master of Science degree in Computer Science
from UMASS Amherst and a Master of Science

in Informatics from the University of Stuttgart/Germany. Mr.
Atighetchi is a Senior Member of the IEEE, member of ACM, and
has authored over 60 publications in peer-reviewed conferences and
journals on topics including adaptive security, Red Team assessments,
identity management, and Cross Domain Solutions. Raytheon BBN
Technologies, 10 Moulton St, Cambridge, MA 02138

Dr. Vatche Ishakian is a Scientist in the
distributed computing group at BBN working
on USAF-sponsored research projects. Dr.
Ishakian’s has a PhD degree in Computer
Science from Boston University and is a member
of the IEEE and ACM. His experience spans

a broad set of disciplines across networking and distributed
systems, including application-level scheduling and management,
network economics, data placement, and network architecture.
Dr. Ishakian has authored over 15 publications in peer-reviewed
conferences and journals. Raytheon BBN Technologies, 10
Moulton St, Cambridge, MA 02138

Dr. Joseph Loyall is a principal scientist at
Raytheon BBN Technologies. He has been the
principal investigator for Defense Advanced
Research Projects Agency and AFRL research and
development projects in the areas of information

Figure 7. STEG Attack Tree for Loss of Integrity

Cyber Security and Information Systems Information Analysis Center (CSIAC) 25

management, distributed middleware, adaptive applications, and
quality of service. He is the author of over 100 published papers. He
is a Distinguished Member of the ACM and a Senior Member of
the IEEE and of the AIAA. Dr. Loyall has a doctorate in computer
science from the University of Illinois. Raytheon BBN Technologies,
10 Moulton St, Cambridge, MA 02138

Dr. Partha Pal is a Principal Scientist at BBN
Technologies. His research interest is in the
areas of adaptive cyber-defense, resiliency and
survivability. As the Principle Investigator in a
number of past and ongoing projects sponsored
by various agencies, he has been leading the

development, demonstration and evaluation of innovative cyber-
defense mechanisms, strategies and survivability architectures,
and using them to build survivable distributed information
systems. He is a senior member of the IEEE and a member of the
ACM. He has over 80 publications in peer reviewed conferences
and journals, and holds a PhD in Computer Science from
Rutgers University. Raytheon BBN Technologies, 10 Moulton
St, Cambridge, MA 02138

Mr. Asher Sinclair is a Senior Program
Manager at AFRL’s Information Directorate
working in the Resilient Synchronized Systems
Branch (RISB) at the Rome Research Site. His
interests include research and development in
enterprise systems management, service-oriented

architectures, and Cyber security. He has contributed to more
than 18 technical papers and conference proceeding publications.
He holds a bachelor’s degree in Computer Information Systems
from the State University of New York and a master’s degree in
Information Management from Syracuse University. Air Force
Research Laboratory, 525 Brooks Road, Rome, NY 13441, USA

Mr. Robert Grant works for the Air Force
Research Laboratory Information Directorate in
Rome New York. He has a B.A. in English from
the University at Buffalo, a B.A. in Computer
Science from Oswego State, and is currently
working on his Masters in Computer Science at

Syracuse University. Air Force Research Laboratory, 525 Brooks
Road, Rome, NY 13441, USA

References

[1] Eoin Keary, Integration into the SDLC(Software Development
Life Cycle), Retrieved Nov 06 2013, https://www.owasp.org/
images/f/f6/Integration_into_the_SDLC.ppt

[2] JUnit Homepage, Retrieved Sep 06 2013, https://github.com/
junit-team/junit/wiki/Getting-started

[3] Nessus Vulnerability Scanner, Retrieved Sep 06 2013, http://
www.tenable.com/products/nessus

[4] HP Fortify My App, Retrieved Sep 06 2013, https://www.
fortifymyapp.com/

[5] YourKit Profiler, Retrieved Sep 06 2013, http://www.yourkit.
com/

[6] Grinder, Retrieved Sep 06 2013, http://grinder.sourceforge.
net/

[7] Network Management Information System, Retrieved June
10 2013, http://www.sins.com.au/nmis/sample/

[8] Software Testing Automation Framework, Retrieved June 10
2013, http://staf.sourceforge.net/

[9] Java Simon - Simple Monitoring API , Retrieved June 10 2013,
http://code.google.com/p/javasimon/

[10] Metrics, http://metrics.codahale.com, Retrieved June 10, 2013

[11] Ganglia Monitoring System, Retrieved June 10 2013, http://
ganglia.sourceforge.net/

[12] Graphite - Scalable Realtime Graphing, Retrieved June 10
2013, http://graphite.wikidot.com/

[13] Splunk, http://www.splunk.com/ Retrieved June 10 2013.

[14] ArcSight, http://en.wikipedia.org/wiki/ArcSight

[15] Cody Burleson, “How to setup SLF4J and LOGBack in a web
app – fast”, Apr 10 2013, https://wiki.base22.com/display/btg/
How+to+setup+SLF4J+and+LOGBack+in+a+web+app+-+fast

[16] Fielding, Roy Thomas, “Architectural styles and the design
of network-based software architectures”, Diss. University of
California, 2000.

[17] Jenkins: An extendable open source continuous integration
server, http://jenkins-ci.org/ Retrieved July 1 2013.

[18] Kelley Dempsey, Nirali hawla, Arnold Johnson, Ronald
John-ston, Alicia Clay Jones, Angela Orebaugh, Matthew Scholl,
and Kevin Stine, “Information Security Continuous Monitoring
(ISCM) for Federal Information Systems and Organizations”,
Retrieved June 25 2013 http://csrc.nist.gov/publications/
nistpubs/800-137/SP800-137-Final.pdf

[19] Jason Miller, “Agencies struggle with continuous monitoring
mandate”, Retrieved June 25 2013 http://www.federalnewsradio.
com/513/2681377/Agencies-struggle-with-continuous-
monitoring-mandate

[20] “R: Box Plot Statistics”, R manual, Retrieved June 3 2013,
http://stat.ethz.ch/R-manual/R-devel/library/grDevices/html/
boxplot.stats.html

[21] “Secure and QoS-Managed Information Exchange between
Enterprise and Constrained Environments”, currently in
submission to appear in Proceedings of ISORC 2014.

METRINOME – CONTINUOUS MONITORING AND SECURITY
VALIDATION OF DISTRIBUTED SYSTEMS (CONT.)

Journal of Cyber Security and Information Systems Volume II Number 1: Knowledge Management26

